

CLASS X SAMPLE PAPER MATHS

POLYNOMIAL

POINTS TO REMEMBER:-

1. Degree of polynomial: If $p(x)$ is a polynomial in x, the highest power of x in $p(x)$ is called the degree of the polynomial.
2. Linear polynomial: A polynomial of degree 1.
3. Quadratic polynomial: A polynomial of degree 2 .
4. Cubic polynomial: A polynomial of degree 3 .
5. Constant polynomial: A polynomial of degree zero.
6. Zero of polynomial: A real number k is said to be zero of a polynomial $\mathrm{p}(\mathrm{x})$, if $\mathrm{p}(\mathrm{k})=0$.
7. Geometrical meaning of zero of polynomial: The graph of a linear polynomial is a straight line and it cut X - axis at exactly one point. The graph of a Quadratic polynomial is a parabola which cuts X - axis at most two points.
8. Relationship between zeros and coefficients:

$$
\text { Sum of Zeros }=\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}
$$

Questions:

1. Find the zeros of the quadratic polynomial $x^{2}+7 x+10$, and verify the relationship between the zeros and the coefficients.
2. Find the zeros of the quadratic polynomial $x^{2}-3$, and verify the relationship between the zeros and the coefficients.

chse	
CBuess	CBSEGuess.com

3. Find a quadratic polynomial, the sum and product of whose zeroes are $\sqrt{3}$ and 2 , respectively.
4. If 2 and 3 are the zeros of the quadratic polynomial $3 x^{2}-2 k x+2 m=0$, find the values of k and m.
5. Find a quadratic polynomial, the sum and product of whose Zeros are
$\frac{2+\sqrt{5}}{2}$ and $\frac{2-\sqrt{5}}{2}$
6. If the sum and product of Zeros of the quadratic polynomial $\mathrm{ax}^{2}-5 \mathrm{x}+\mathrm{c}=0$ are both equal to 10 , find the value of a and c.
7. One zero of the quadratic polynomial $2 x^{2}-8 x-k=0$ is $5 / 2$. Find the other zero and the value of k.
8. Find all the zeroes of $2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$, if to its zeroes are $\sqrt{2}$ and $-\sqrt{2}$
9. What must be added to $6 x^{5}+5 x^{4}+11 x^{3}-3 x^{2}+x+1$, so that the polynomial so obtained is exactly divisible by $3 x^{2}-2 x+4$?
10. What must be subtracted from $2 x^{4}-11 x^{3}+29 x^{2}-40 x+29$, so that the polynomial so obtained is exactly divisible by $x^{2}-3 x+4$?
11. Find the value of k so that $6 x^{3}+x^{2}-19 x+k$ is exactly divisible by $x+2$.
12. The sum and product of zeroes of a quadratic polynomial are $-1 / 2$ and -3 respectively. What is the quadratic polynomial?
13. If two Zeroes of the polynomial $x^{4}+3 x^{3}-20 x^{2}-6 x+36$ are $\sqrt{2}$ and $-\sqrt{2}$, find the other zeroes of the polynomial.
14. Find the zeros of the quadratic polynomial $x^{2}-2 x-8$, and verify the relationship between the zeros and the coefficients.
15. Obtain all other Zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{5} / 3$ and $-\sqrt{5} / 3$
16. What must be subtracted from $8 x^{4}+14 x^{3}-2 x^{2}+7 x-8$, so that the polynomial so obtained is exactly divisible by $4 x^{2}+3 x-2$?
17. If the sum of the zeroes of the quadratic polynomial $x^{2}-8 x+k$ is 40 , find the value of k.

Cbse	

18. if the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x 2-2 x+k$, the remainder comes out to be $\mathrm{x}+\mathrm{a}$, find k and a .
19. On dividing $\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2$ by a polynomial $\mathrm{g}(\mathrm{x})$, the quotient and remainder were $\mathrm{x}-2$ and $-2 x+4$, respectively. Find $g(x)$.
20. If two of the zeroes of the polynomial $x^{4}-6 x 3-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes.
21. Find the zeros of the polynomial $x^{2}+7 x+12$, and verify the relationship between the zeroes and its coefficients.
22. If α and β are zeroes of the polynomial $f(x)=k x^{2}+4 x+4$, such that $\alpha^{2}+\beta^{2}=24$, find the value of k.
23. Find the zeroes of the polynomial $f(x)=a b x^{2}+\left(b^{2}-a c\right) x-b c$, and verify the relationship between the zeroes and its coefficients.
24. If the sum of the squares of zeroes of the polynomial $x^{2}-8 x+k$ is 40 , find the value of k.
25. If α, β are the zeroes of the polynomial $2 x^{2}+5 x+k$ satisfying the relation $\alpha^{2}+\beta^{2}+\alpha \beta=$ $21 / 4$, then find the value of k for this to be possible.
